= Microsoft

Hadoop 101

November 2020

Brolinskyi Sergii

Plan of presentation

* How big is Big Data

 What do you need to do to be able to operate with the Big
Data

* Hadoop origins

 What exactly is happening when you want to run a task on
Hadoop

* Hadoop ecosystem/tech stack

e HDFS

* YARN

* Demo

* Summary

Annual S5ize of the Global Datasphere 175 ZB

S1g Data System Reqguirements

Store Process Scale

HDFS

MapReduce MapReduce

Google File System H

What is Hadoop

Hadoop

HDFS MapReduce
A file system A framework to
to manage the process data across

storage of data multiple servers

Hadoop

HDFS

MapReduce

YARN

A framework to
define a data
processing task

A framework to
run the data
processing task

* User must define map and reduce task
using the MapReduce API (those two
that we've seen in the lecture 2)

* The job is triggered on the cluster with
the help of the YARN

* YARN then figures out where and how
to run the job, and store the results

What happens‘
when you run

a job on
Hadoop e files in HDFS

Hadoop Ecosystem

Hadoop

s

How to install Hadoop on Win 10

3 ways of installation:
e Standalone mode (no hdfs nor yarn, just checking the MapReduce logic)

* Pseudo-distributed mode (or a single-node mode) (advanced test and
simulating an actual cluster)

 Fully distributed mode (the production mode)

How to install Hadoop on Win 10

Single-node mode: 2 JVM processes will run
* HDFS for storage
* YARN for managing tasks

Run Linux on Windows

Install and run Linux distributions side-by-side on the Windows Subsystem for
Linux (WSL).

@'e - - [

WSL — Windows subsystem for Linux

Installed Installed Cwhned Installed Cwned

Enable the feature

EX Windows PowerShell — m b4

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserwved.

Try the new cross-platform Power5hell https://aka.ms/pscoreb

PS C:\Users\sebrolin> Enable-WindowsOptionalFeature Microsoft-Windows-Subsystem-Linux

Install Ubuntu

Microsoft Stare

= Home Gaming Entertainment Productivity Deals Microsoft

9 This product is installed. e
Ubuntu 20.04 LTS m

Canonical Group Limited * Developer tools > Utilities

& Share

ubuntu®

Ubuntu 20.04 LTS on Windows allows you to use Ubuntu Terminal and run Ubuntu command line utilities including bash, ssh, git, apt and many more.

Please note that Windows 10 S does not support running this app.

More

E EVERYONE

Run some code

apt-get update
-version

apt-get install openjdk-11-jre-headless
apt-get install openjdk-11-jdk
apt-get 1install ssh

Download and unzip Hadoop

wget https://miroir.univ-lorraine.fr/apache/hadoop/common/hadoop-3.3.8/hadoop-3.3.0.tar.gz
mkdir ~/hadoop

tar -xvzf hadoop-3.3.@.tar.gz -C ~/hadoop
cd ~/hadoop/hadoop-3.3.

Setup ssh in a passphrase less mode

ssh-keygen -t rsa -P '° -t ~/.ssh/1d rsa
cat ~/.ssh/id rsa.pub »>> ~/.ssh/authorized keys
chmod @688 ~/.ssh/authorized keys

Format the namenode

bin/hdfs namenode -format

Configuration of a single node

Files that should be modified according to the setup doc:
e ~/.bashrc

* etc/hadoop/hadoop-env.sh

* etc/hadoop/core-site.xml

* etc/hadoop/hdfs-site.xml

* etc/hadoop/mapred-site.xml

* etc/hadoop/yarn-site.xml

Follow next guides to better help:
* https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
* https://kontext.tech/column/hadoop/445/install-hadoop-330-on-windows-10-using-wsl|

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://kontext.tech/column/hadoop/445/install-hadoop-330-on-windows-10-using-wsl

Configuration of a single node

(':I' sebrolin@MININT-EATODET: ~/hadoop/hadoop-3.3.0

dfs.replication
1

Run the hadoop
sbin/start-dfs.sh
jps
sbin/start-yarn.sh
jps |

— o —

3756 MNameNode

Hadoop cluster

~ Cluster

About
Nodes
MNode Labels
Applications
NEW

MEW SAVING

SUBMITTED
ACCEPTED
RUMNING
FINISHED
FAILED
KILLED

Scheduler

» Tools

Cluster Metrics

Apps Submitted
11 0
Cluster Nodes Metrics

Active Nodes
1
Scheduler Metrics

Scheduler Type
Capacity Scheduler
Show 20 + entries

ID

application_1604133744741_0014

application_1604133744741_0013

application_1604133744741_0012

application_1604133744741_0011

User

Apps Pending

=

sebrolin grep-

sort

sebrolin - grep-

search

sebrolin - grep-

s0rt

sebrolin - grep-

search

Name Application

Apps Running

Decommissioning Nodes

Apps Completed

11

Scheduling Resource Type
[memory-mb {(unit=Mi), vcores]

MAPREDUCE

MAPREDUCE

MAPREDUCE

MAPREDUCE

Application
Tags

Queue

default

default

default

default

=

Application
Priority

Hadoop data node

Hadoop Overview Utilities ~

DataNode on MmININT-EA70061 .europe.corp.microsoft.com:9866

Cluster ID: CID-3f7df37e-3028-42ca-a6de-594160fb1d0e

Version: 3.3.0, raa®6f1871bfd858f9bacs9cf2a81ec4T0dab49af

Block Pools

Namenode Address Block Pool ID Actor State Last Heartbeat Last Block Report Last Block Report Size (Max Size)

localhost: 2000 BP-911422811-127.0.1.1-1604133558936 RUNNING 25 4 hours 21.17 KB (128 MB)

Volume Information

Directory StorageType Capacity Used Capacity Left Capacity Reserved Reserved Space for Replicas Blocks

ftmp/hadoop-sebrolin/dfs/data DISK 65.06 MB 157.76 GB 0B 0B 2181

Hadoop, 2020.

HDFS

HDFS — is Hadoop distributed file system
- All files are immutable, you can’t change them
- Data is stored in a semi-structured form
- It is still a file system

HDFS

Built on commodity hardware

Highly fault tolerant, hardware
failure is the norm

Suited to batch processing - data
access has high throughput rather
than low latency

Supports very large data sets

HDFS

Manage file storage across
multiple disks

9SS

HDFS

1 node is the
master node

9 9L

HDFS

Name node Data nodes

Name node ‘\
The name node
: IS the table of

contents

Data nodes ‘\
Q Q The data nodes
. : hold the actual

text in each page

Name node Manages the overall file

system

Stores

+ The directory structure
- Metadata of the files

Storing a File in H

pext up previous contents index
Next: Dynamic indexing Up: Index construction Previous: Single-pass in-memory indexing Contents Index

Distributed indexing

Collections are often so large that we cannot perform index construction efficiently on a single machine. This is particularly true of the
World Wide Web for which we need large computer clusters [«]to construct any reasonably sized webd Index. Web search engines, therefore,
use distributed indexing algorithms for index construction. The result of the construction process is o distributed index that is
partitioned across several machines - either according to term or according to document. In this section, we describe distributed indexing
for a

term-partitioned index . Most large search engines prefer a document-partitioned index (which can be casily generated from 3 term-
partitioned index)., We discuss this topic further in Section 28,3 (page [«]).

The distributed index construction method we describe in this section is an application of MapReduce , 3 general architecture for
distributed computing. MapReduce is designed for large computer clusters. The point of a cluster is to solve large computing problems on
cheap commodity machines or nodes that are built from standard parts (processor, memory, disk) as opposed to on 3 supercomputer with
specialized hardware, Although hundreds or thousands of machines are available in such clusters, Individual machines can fall at any time,
One requirement for robust distributed indexing is, therefore, that we divide the work up into chunks that we can ecasily assign and - in
case of failure -~ reassign. A master node directs the process of assigning and reassigning tasks to individual worker nodes.

The map and reduce phases of MapReduce split up the computing job into chunks that standard machines can process in 3 short time. The
various steps of MapReduce are shown in Figure 4.5 and an example on a collection consisting of two documents is shown in Figure 4.6 ,
First, the input data, in our case » collection of web pages, are split into a splits where the size of the split is chosen to ensure
that the work can be distributed evenly (chunks should not be too large) and efficiently (the total number of chunks we need to manage
should not be too large); 16 or 64 MB are good sizes in distributed indexing. Splits are not preassigned to machines, but are instead
assigned by the master node on an ongoing basis: As @ machine finishes processing one split, it is assigned the next one. If 3 machine
dies or becomes a laggard due to hardware problems, the split it is working on is simply reassigned to another machine.

Figure 4.5: An example of distributed indexing with MapReduce. Adapted from Dean and Ghemawat (2004).

\includegraphics (width=11.5¢m] {art/nopreduce. eps)

In general, MapReduce breaks a large computing problem into smaller parts by recasting it in terms of manipulation of key-value pairs .
For indexing, & key-value palir has the form (termID,docID). In distributed indexing, the mapping from terms to termIDs s also distributed
and therefore more complex than in single-machine indexing. A simple solution is to maintain a (perhops precomputed) mapping for frequent
terms that is copled to all nodes and to use terms directly (instead of termlDs) for infrequent terms. We do not address this problem here
and assume that all nodes share a consistent term S\rightarrows termlD mapping.

The map phase of MapReduce consists of mapping splits of the input data to key-value pairs. This 1s the same parsing task we also
encountered in BSBI and SPIMI, and we therefore call the machines that execute the map phase parsers . Each parser writes its output to
local intermediate files, the segment files (shown as \fhox{a-f\medstrut) \fhox{g-p\medstrut} \fhox{q-z\nedstrut} in Figure 4.5).

For the reduce phase , we want all values for 2 given key to be stored close together, so that they can be read and processed quickly,
This is achieved by partitioning the keys into $)$ term partitions and having the parsers write key-value pairs for each term partition
into a separate segment file. In Figure 4.5 , the term partitions are according to first letter: a-f, g-p, q-2, and $j=138. (We chose these
key ranges for ecase of exposition. In general, key ranges need not correspond to contiguous terms or termiDs.) The term partitions are
defined by the person who operates the indexing system (Exercise 4.6). The parsers then write corresponding segment files, one for each
term partition. Each term partition thus corresponds to $r§ segments files, where r is the number of parsers. For instance, Figure 4.5
shows three a-f segment files of the a-f partition, corresponding to the three parsers shown in the figure,

Collecting all volues (here: docIDs) for a given key (here: termID) into one list is the task of the inverters in the reduce phase. The

maaben manlane snah S smeablalen B s S1IBBsnnan Ta nubhom - we fa AN snne 28 suvsnas messnlans Sonm saatblinlone Tao sane ol BalrVitaw

A large
ext file

Storing a File in HDES

Break the data
into blocks

S e, BT Different length files are
i el treated the same way

Storage is simplified

Unit for replication and
fault tolerance

e Y E b e—

Storing a File in HDFES
size 128 MB

Block size is a trade off

Reduces Increases

parallelism overhead

Storing a

“ DN 1

__ ——

DN 2 l

—ile iIn HDES

rr —

DN 3

SR Mt
T ——————————

DN 4

R —

|

Each node contains a
partition or a split of data

Storing a File in HDES

r— - - I 1
DN T DN 3
Block 1 ¥ Block 2
Rcnmmne - v o a
T - B e
DN 2 DN 4
Block 3 § Block 4 Block 7 § Block 8
L 3 L - e cr—.

r

—— — ——

Name node

Block 1

Block 2

Block 3

Block 4

Block 5

1

Reading a File in HDFES

1. Use metadata in the name node to
look up block locations

2. Read the blocks from respective
locations

Challenges of Distributed Storage

Failure management
in the data nodes

Failure management
for the name node

Managing Faillures in Data Nodes

Define a
replication factor

Replication

Name node

The replica
locations are
also stored In

the name node

Choosing Replica Locations

Minimize

Maximize :
write

redundancy bandwidth

Rack 1 Rack2 Rack 3

Maximize

redundancy ™y

Store replicas “far away”
l.e. on different nodes

Minimize

write
bandwidth

Rack 1 Rack2 Rack 3

Data is forwarded
from here to the
next replica location

Minimize

write
bandwidth

Rack 1 Rack2 Rack 3

Forwarded further
to the next replica
location

Default Hadoop Replication Strategy

Rack 1 Rack2 Rack 3

Third replica is on o2
the same rack as
the second but on
different nodes

Default Hadoop Replication Strategy

Rack 1 Rack 2 Rack 3

Reduces inter-

rack traffic and

Improves write
performance

Setting the Replication Factor

dfs.replication

S

This is the default in fully-distributed
mode

Setting the Replication Factor

dfs.replication

1

The pseudo-distributed mode has just one
node so the replication factor cannot be >1

Name Node Failures

Block locations are
not persistent

l.e. they are stored
In memory

block caching

r

Name node

File 1] | Block 1 DN 1

File1| |Block2| |DN1

File1]| | Block 3| |DN 2

File1]| |Block 4| |DN 2

File1| |Block 5| |[DN 3

1

Name Node Failures

If the name node fails

File-Block Location
mapping is lost!

Managing Name Node Failures

Metadata Files Secondary Name

Node

Metadata Files

fsimage
edits

Two files that store
the filesystem
metadata

YARN

Yet Another Resource Negotiator

YARN

- Co-ordinates tasks running on
the cluster

Assigns new nodes in case of
failure

YARN

Resource Manager Node Manager

Runs on a single | Run on all other
master node | nodes

Schedules tasks | Manages tasks on the
across nodes | individual node

YARN

ResourceManager
w NodeManager

NodeManager

NodeManager

Already
running tasks

l
il

NodeManager

NodeManager

JOb Submitting a Job

ResourceManager
M NodeManager

NodeManager NodeManager]
[Nodemanage] Find a
N Man r
NodeManager NodeManager Od.e ATage
with free

capacity

Application Master Process

This is the
logical unit for
resources the

process needs -
memory, CPU etc

NodeManager

Container

YARN schedulers

e FIFO scheduler
e Capacity scheduler
* Fair scheduler

summary

It is complicated to always think about the parallel data processing and manually
define the rules of how it should be done, so frameworks add a level of abstraction so

you would only need to think about what work should be done.

HDFS, MapReduce and YARN are the building blocks of any Hadoop application

m Microsoft

© Copyright Microsoft Corporation. All rights reserved.

